PHOSPHORUS HETEROCYCLE SYNTHESIS BY RPX2·A1X3 ADDITION TO [1,n]DIENES V. A NEW SYNTHESIS OF SUBSTITUTED PHOSPHORINENES Y. Kashman^{*} and A. Rudi Department of Chemistry, Tel-Aviv University, Tel Aviv, Israel.

The $RPX_2 \cdot AIX_3$ complex (1) was found to be an efficient reagent for the synthesis of phosphaheterocycles starting from [1,n]dienes¹. The reaction of these complexes with α -cyclopropyl- ω olefines and in particular with vinyl cyclopropanes, is the subject of this report.

Monoenes are known to react rapidly with l^2 . However, the products are well-defined only in special cases like branched monoenes³ yielding phosphetanes, and l,l-disubstituted ethylenes^{1d} in a 2:1 addition, yielding phospholanes.

Gem-dihalocyclopropanes, easily prepared by the addition of dihalocarbene to double bond^{4a,b}, and known to be opened by various electrophiles, were found by us⁵ to be unreactive towards $\frac{1}{2}$, (under the conditions usually employed in the reactions of this reagent with olefines; 0-30° for 1-2 hours in CH₂Cl₂ solution)¹. Applying these results to the case of the cyclopropyl olefines ($\frac{a}{2}$), one would expect the double bond to be the first to be attacked by complex $\frac{1}{2}$, giving an intermediate carbonium ion ($\frac{b}{2}$). This ion could then potentially interact intramolecularly to give a phospha heterocycle, as follows:

Addition of 1,1-dichloro-2-methyI-2-isopropenyl cyclopropane ($\underline{2}a$) to a preformed solution of MePCl₂·AlCl₃ in CH₂Cl₂ at 0°, followed by quenching in aq.NaHCO₃ solution, gave in ca. 15% yield a crystalline compound $\underline{3}a$; $C_8H_{13}Cl_2OP^6$, m.p. 84° (acetone-hexane), m/e(%): 228/226 (M⁺,6/10), 193/191 (M⁺-Cl,30/100)⁷; $v_{max}^{CHCl_3}$ 3050,1650,1430,1210,1180,1160,1090 cm⁻¹; ¹H-NMR⁸: 1.77s (3H), 1,80s (3H), 2.75brs (2H,J_{PH}=14Hz) and 3.3m (2H,J_{PH}=15); ¹³C-NMR⁸; 124.6d (C-4,J_{PC}=9), 120.6d (C-5,J_{PC}=6), 79.1d (C-2,J_{PC}=65H₂), 49.8t (C-3), 31.4dt (C-6,J_{PC}=66Hz), 21.4dq (C-9,J_{PC}=12), 20.2q (C-8) and 9.7dq (C-7,J_{PC}=74Hz). All these above data are in good agreement with a 2,2-dichloro-4,5-dimethyl-phosphorin-4-ene system ($\underline{3}a$, Scheme 1). The ¹H-NMR spectrum indicates the presence of two vinyl methyl groups which, in the absence of vinylic-protons, must be part of a tetra sub-stituted double bond. The same is concluded from the ¹³C-NMR spectrum, which shows two doublets

due to P-C couplings at 120.6 and 124.6. The 13 C-NMR spectrum confirms also the phospha heterocycle, since two of the carbon atoms are adjacent to the P-atom; one appears as a double triplet at 31.4 (J_{PC} =66Hz) and the other which bears the two chlorines at 79.1d (J_{PC} =65H_z). The obtaining of $\underline{3}$ a alone may result from the preferential opening of the cyclopropane ring to give the more stable R-CCl₂ ion.

The reaction of 2a with PhPC1₂·A1C1₃ gave compound $\frac{4^9}{2}$ (Scheme 1), the P-phenyl analog of 3a, and a second unstable oily substance $\frac{5}{2}$; $C_{13}H_{15}C1_2OP$, m/e(%) 290/288 (M⁺,40/60), 255/253 (M⁺-C1, 30/100) and 204(60); \bigvee_{max}^{CHC1} 3 3020,1630,1460,1200,980,860 cm⁻¹; ¹H-NMR: 1.70brs (6H), 2.85d(2H, J_{PH} =19), 6.20brs (1H, J_{PH} =3Hz), 6.5brs (1H, J_{PH} =460Hz, P-H) and 7.5-8.0m (Ph); ¹³C-NMR: 132.7d (C-4), 126.2d (J_{PC} =10), 121.3d (J_{PC} =5)¹⁰, 38.7dt (C-1, J_{PC} =63), 20.1q and 17.4q (C₂ and C₃-Me's). In the absence of two carbon atoms with large J_{PC} values (ca. 65Hz), the phosphorus molety has to be linked to the rest of the molecule by a single P-C bond. The elemental composition together with the other spectral data suggest for this oil structure $\frac{5}{2}$ a secondary phosphine oxide (resulting from P-C1 hydrolysis) The obtaining of $\frac{5}{2}$ in ca. threefold ratio compared to $\frac{4}{2}$ and the complete absence of a possible counterpart in the reaction with CH₃PC1₂ may be explained by enhanced steric crowdedness in intermediate \underline{b} , which leads to a process of elimination rather than to internal closure to the heterocycle¹¹.

Performing the above reaction without taking special precautions to avoid the presence of water (or when leq. of water is added intentionally) led to the production of two new compounds $(\stackrel{6}{9}$ and $\stackrel{7}{24})^{12}$, without either of the former products ($\stackrel{4}{4}$ or $\stackrel{5}{5}$). The spectral data of compounds $\stackrel{6}{9}$ and $\stackrel{7}{24}^{13}$ suggest that they are the addition products of a hydrogen and a P(0)PhCl group to the double bond (with and without corporation of the cyclopropyl ring). This addition, previously described 1d,14 , does not seem to be a simple protonation followed by quenching of the carbanium ion with RPX₂ 15 .

Starting from the vinyl halophenyl cyclopropane (2b), complex $\frac{1}{2}$ gave two isomeric P-epimer phosphorinenes, $\frac{3}{2}b$ and $\frac{3}{2}c$ - the C_2 -phenyl analogs of $\frac{3}{2}a^{17}$. As before, in the presence of water the main compound isolated from the reaction mixture was $\frac{7}{2}b^{18}$, the phenyl analog of $\frac{7}{2}a$. Although the yields of the above-described phosphorinene synthesis are quite modest at present, the reaction seems to us to have value. It is an easy one-step synthesis starting with readily available compounds, and the special substitution pattern of the phosphorinane may enable further interesting transformations of the obtained compounds.

Efforts to perform the $RPX_2 \cdot AIX_3$ addition reaction with allyl or homoallyl cyclopropanes a,n=1 or 2 have failed thus far to give any phosphaheterocycle. If water (0.1-1 eq) is added, however, the higher homologes of <u>6</u> can be obtained in minute quantities.

References and Notes

- 1a. Y. Kashman, Y. Menachem and E. Benary, Tetrahedron 29, 4279 (1973).
- b. Y. Kashman and A. Rudi, Tetrahedron Letters, 2819 (1976).
- c. M. Rotem and Y. Kashman, ibid, 63 (1978).
- d. A. Rudi and Y. Kashman, ibid, 2209 (1978).
- E. Jungerman, J.J. McBride, R. Clutter and A. Mais, J.Org. Chem., 27, 606 (1962).
- 3a. J.J. McBride, E. Jungerman, J.V. Killheffer and R.J. Clutter, ibid, 27, 1833 (1962).
- b. S.E. Cremer and R.J. Chorvat, ibid, 32, 4066 (1967).
- 4a. R. Maurin, M. Bertrand, Bull.Soc.Chim.Fr. 998 (1970) and Synthesis 81 (1978).
- b. T. Shono and R. Oda, Chem.Abs. 55, 4381 (1961).
- c. R.M. Moss, J.Org.Chem. 27, 2683 (1962); b.p. 80/0.5 mm Hg.
- 5. The cyclopropane derivatives examined were: 1,1-dichloro-2,2-dimethylcyclopropane and 1,1dichloro-2-methyl-2-phenylcyclopropane.
- 6. Satisfactory microanalysis was obtained for 3a.
- 7. Performing the mass spectra at 15eV rather than 70eV gave a 2M⁺ ion. The MWt of the compound was established by its vapour pressure; E.P. Clark, J.Anal.Chem. 820, (1941).
- 8. Chemical shifts (CDCl₃) are given in ppm relative to TMS. ¹H-NMR spectra were recorded either on a Jeol-JNM C-60HL spectrophotometer (P-decoupled) or on a Bruker WH-90 instrument ¹³C-NMR spectra were recorded on the Bruker WH-90 instrument under conditions of PND . Signals were assigned using known δ-values, J_{PC} values and off-resonance experiments.
- 9. $C_{13}^{H}_{15}C_{2}^{OP}$, m.p. 135° (acetone-hexane); $v_{max}^{CHC1}_{3}$ 3020,1450,1400,1300,1210,1180,1130,860, 830,700 cm⁻¹; m/e(%) 290/288 (M⁺,8/25) and 255/253 (M⁺-C1, 30/100); ¹H-NMR: 1.75s (3H),

1.85s (3H), 2.8-3.5m (4H) and 7.6-8.4 (5H); 13 C-NMR: 125.5d (J_{PC} =7), 121.5d (J_{PC} =6), 82.6d (J_{PC} =66), 50.9t, 31.2dt (J_{PC} =68), 21.7dq (J_{PC} =12) and 20.3q.

- 10. An additional sp² carbon atom appeared together with the phenyl carbon atoms and could not be identified.
- 11. A similar example observed by us (unpublished) was the failure of phenyl(3-phenylpropyl)halophosphane to undergo internal cyclisation by AlX₃, whereas the methyl analog did undergo ring closure.
- 12. Compounds 6 and A were obtained in ca. 5% and 10%, respectively.
- 13. Compound 6 is an oil; $C_{12}H_{1}C_{13}OP$; m/e(%) 326/324 (M⁺,100/100), 291/289 (M⁺-C1,25/30) and 229/227 (30/100): v_{max}^{1} 3000,1600,1390,1370,1090,1080,1000,950,850 cm⁻¹. ¹H-NMR: 1.4 an AB system (2H), 1.45s(6H,J_{PH}=21), 1.85s(3H) and 7.8m (5H). Compound 7a is an oil; $C_{13}H_{16}C_{13}OP$, m/e(%) 326/324(M⁺,1/1), 291/289 (M⁺-C1, 25/40) and 256/254 (M⁺-2C1, 40/100); v_{max}^{neat} 3000,2960,2930,1590,1440,1380,1240,1110 cm⁻¹; ¹H-NMR: 1.6d (3H,J_{PH}=2), 1.7s (3H), 1.9s (3H), 3.4s (2H,J_{PH}=5), 7.7m (3H) and 8.4m (2H); ¹³C-NMR: 123.3s, 120.0d (J_{PC}=10), 87.6d (J_{PC}=96), 43.9dt (J_{PC}=6) 21.3q, 20.7q and 20.4q.
- 14. P. Crews, J.Org.Chem., <u>40</u>, 1170 (1975).
- 15. We came to the conclusion that the mechanism of this addition is not simply a protonation by HX, obtained from hydrolysis of AlX_3 followed by quenching with RPX_2 , as the addition of RPX_2 ·HX to the olefin failed to give the same products; rather, it appears to involve either a phosphiranium ion or the participation of a special complex produced under the reaction conditions¹⁶. A full description of the experiments carried out to elucidate this problem will be described elsewhere.
- 16a. G.M. Kramer, R.M. Skomoroski and J.A. Hinlicky, J.Org.Chem., 28, 2085 (1963).
- b. H.C. Brown and H. Peasall, J.Am.Chem.Soc., 73, 4681 (1951).
- 17. Compound 3b is crystalline $C_{14}^{H} CloP m.p. 115^{\circ}$ (acetone-hexane), $v_{max}^{CHC1} 3 3000, 1500, 1460, 1310, 1190, 1160, 970, 910 and 900 cm⁻¹; m/e(%): 270/268 (M⁺, 20/50), 233 (M⁺-C1, 50) and 231 (100); ¹H-NMR: 1.50s (3H, J_{PH}=12), 1.85s (6H), 2.5m (2H), 3.2 AB quar. (2H), 7.5m (3H) and 7.9m (2H); ¹³C-NMR: 125.4d (J_{PC}=8), 119.9d (J_{PC}=5), 66.1d (J_{PC}=64), 46.5t, 32.4dt (J_{PC}=69), 21.5dq (J_{PC}=12), 20.0q and 10.0dq (J_{PC}=72). Compound 3c is also crystalline; m.p. 160°, mass spectrum identical with 3b, <math>v_{max}^{CHC1} 3: 3100$, 1510,1470,1410,1200,1180,1150,980,920,900 and 850 cm⁻¹; ¹H-NMR: 1.5s (3H, J_{PH}=15), 1.8s (6H), 2.5brs (1H, J_{PH}=12), 2.9brs (1H, J_{PH}=18), 3.2brs (2H, J_{PH}=18) 7.4-7.6m (3H) and 7.8-8.2m (2H).
- 18. Compound $\frac{7}{2}$ b, $C_{14}H_{19}C1_{2}OP$ is an oil; v_{max}^{neat} 3000,2950,1490,1450,1300,1220 and 1180 cm⁻¹; m/e(%) 306/304 (M',8/13), 269/267 (M'-C1,3/10), 223(63), 221(100), 205(25) and 170(40); ¹H-NMR: 1.22s (3H) 1.61s (3H), 1.7s (3H), 2.2s (3H, J_{PH} =15), 3.46brs (2H, J_{PH} =9), 7.7m (3H) and 8.1m (2H); ¹³C-NMR: 131.5s, 121.3d (J_{PC} =12), 76.3d (J_{PC} =76), 40.9dt (J_{PC} =6), 21.2q, 20.8q, 19.6q and 17.7dq (J_{PC} =75).

(Received in UK 8 January 1979)