PHOSPHORUS HETEROCYCLE SYNTHESIS BY RPX ${ }_{2} \cdot \mathrm{AlX}_{3}$ ADDITION TO [1,n]DIENES $V$. A NEW SYNTHESIS OF SUBSTITUTED PHOSPHORINENES<br>Y. Kashman ${ }^{*}$ and A. Rudi<br>Department of Chemistry, Tel-Aviv University, Tel Aviv, Israel.

The $\mathrm{RPX}_{2} \cdot \mathrm{AlX}_{3}$ complex (1) was found to be an efficient reagent for the synthesis of phosphaheterocycles starting from $[1, n] d i e n e s^{1}$. The reaction of these complexes with $\alpha$-cyclopropyl- $\omega$ olefines and in particular with vinyl cyclopropanes, is the subject of this report.

Monoenes are known to react rapidly with ${\underset{2}{2}}^{2}$. However, the products are well-defined only in special cases like branched monoenes ${ }^{3}$ yielding phosphetanes, and 1,1 -disubstituted ethylenes ${ }^{1 d}$ in a $2: 1$ addition, yielding phospholanes.

Gem-dihalocyclopropanes, easily prepared by the addition of dihalocarbene to double bonds ${ }^{4 a, b}$, and known to be opened by various electrophiles, were found by $u s^{5}$ to be unreactive towards $\underset{\equiv}{1}$, (under the conditions usually employed in the reactions of this reagent with olefines; $0-30^{\circ}$ for l-2 hours in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ${ }^{1}$. Applying these results to the case of the cyclopropyl olefines (a), one would expect the double bond to be the first to be attacked by complex $\underset{\underline{n}}{ }$, giving an intermediate carbonium ion (b). This ion could then potentially interact intramolecularly to give a phospha heterocycle, as follows:


Addition of 1,1-dichloro-2-methy1-2-isopropenyl cyclopropane (2a) to a preformed solution of $\mathrm{MePCl} 1_{2} \cdot \mathrm{AlCl}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ}$, followed by quenching in aq. $\mathrm{NaHCO}_{3}$ solution, gave in ca. $15 \%$ yield
 $193 / 191\left(\mathrm{M}^{+}-\mathrm{Cl}, 30 / 100\right)^{7} ; \nu_{\max } \mathrm{CHE}_{3}^{13} 3050,1650,1430,1210,1180,1160,1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}_{\mathrm{HMR}}{ }^{8}: \quad 1.77 \mathrm{~s}$ (3H), $1,80 \mathrm{~s}(3 \mathrm{H}), 2.75 \mathrm{brs}\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=14 \mathrm{~Hz}\right)$ and $3.3 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=15\right) ;{ }^{13}{ }_{\mathrm{C}}-\mathrm{NMR}^{8} ; 124.6 \mathrm{~d}\left(\mathrm{C}-4, \mathrm{~J}_{\mathrm{PC}}=9\right), 120.6 \mathrm{~d}$ $\left(C-5, J_{P C}=6\right), 79.1 d\left(C-2, J_{P C}=65 H_{z}\right), 49.8 t(C-3), 31.4 d t\left(C-6, J_{P C}=66 H z\right), 21.4 d q\left(C-9, J_{P C}=12\right), 20.2 q$ ( $\mathrm{C}-8$ ) and $9.7 \mathrm{dq}\left(\mathrm{C}-7, \mathrm{~J}_{\mathrm{PC}}=74 \mathrm{~Hz}\right.$ ). All these above data are in good agreement with a 2, 2 -dichloro-4,5-dimethyl-phosphorin-4-ene system ( 3 a, Scheme 1). The ${ }^{1}{ }_{H}$-NMR spectrum indicates the presence of two vinyl methyl groups which, in the absence of vinylic-protons, must be part of a tetra substituted double bond. The same is concluded from the ${ }^{13}$ C-NMR spectrum, which shows two doublets


## Scheme-1

due to P-C coupling; at 120.6 and 124.6 . The ${ }^{13} C-N M R$ spectrum confirms also the phospha heterocycle, since two of the carbon atoms are adjacent to the P -atom; one appears as a double triplet at $31.4\left(J_{P C}=66 \mathrm{~Hz}\right)$ and the other which bears the two chlorines at $79.1 \mathrm{~d}\left(J_{P C}=65 H_{z}\right)$. The obtaining of 3 a alone may result from the preferential opening of the cyclopropane ring to give the more stable $\mathrm{R}-\mathrm{C}_{\mathrm{C}} 1_{2}$ ion.

The reaction of 2 a with $\mathrm{PhPCl}_{2} \cdot \mathrm{AlCl}_{3}$ gave compound $4^{9}$ (Scheme 1), the P-phenyl analog of 3 a, and a second unstable oily substance $5 ; \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{OP}, \mathrm{m} / \mathrm{e}(\%) 290 / 288\left(\mathrm{M}^{+}, 40 / 60\right), 255 / 253\left(\mathrm{M}^{+}-\mathrm{Cl}\right.$, $30 / 100$ ) and $204(60) ;{ }_{\operatorname{LCHCl}^{2}} 3020,1630,1460,1200,980,860 \mathrm{~cm}^{-1} ;{ }^{1}{ }_{\mathrm{H}-\mathrm{NMR}:} \quad 1.70 \mathrm{brs}(6 \mathrm{H}), 2.85 \mathrm{~d}(2 \mathrm{H}$, $\mathrm{J}_{\mathrm{PH}}=19$ ), $6.20 \mathrm{brs}\left(1 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=3 \mathrm{~Hz}\right), 6.5 \mathrm{brs}\left(1 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=460 \mathrm{~Hz}, \mathrm{P}-\mathrm{H}\right)$ and $7.5-8.0 \mathrm{~m}(\mathrm{Ph}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ : 132.7 d $(\mathrm{C}-4), 126.2 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=10\right), 121.3 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=5\right)^{10}, 38.7 \mathrm{dt}\left(\mathrm{C}-1, \mathrm{~J}_{\mathrm{PC}}=63\right), 20.1 \mathrm{q}$ and $17.4 \mathrm{q}\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{3}-\mathrm{Me}{ }^{\prime} \mathrm{s}\right)$. In the absence of two carbon atoms with large $J_{P C}$ values (ca. 65 Hz ), the phosphorus moiety has to be linked to the rest of the molecule by a single P-C bond. The elemental composition together with the other spectral data suggest for this oil structure 5 a secondary phosphine oxide (resulting from P-C1 hydrolysis) The obtaining of 5 in ca. threefold ratio compared to $\underline{\underline{4}}$ and the complete absence of a possible counterpart in the reaction with $\mathrm{CH}_{3} \mathrm{PCl}_{2}$ may be explained
by enhanced steric crowdedness in intermediate $\underline{\underline{b}}$, which leads to a process of elimination rather than to internal closure to the heterocycle ${ }^{11}$.

Performing the above reaction without taking special precautions to avoid the presence of water (or when leq. of water is added intentionally) led to the production of two new compounds ( $6=$ and $7 a)^{12}$, without either of the former products ( 4 or 5 ). The spectral data of compounds 6 and $7_{=}^{13}$ suggest that they are the addition products of a hydrogen and a $P(0) \mathrm{PhCl}$ group to the double bond (with and without corporation of the cyclopropyl ring). This addition, previously described ${ }^{1 d, 14}$, does not seem to be a simple protonation followed by quenching of the carbanium ion with $\mathrm{RPX}_{2}{ }^{15}$.

Starting from the vinyl halophenyl cyclopropane ( 2 b ), complex 1 gave two isomeric P-epimer phosphorinenes, 3 b and $\underset{\underline{3}}{ } \mathrm{c}$ - the $\mathrm{C}_{2}$-phenyl analogs of $3 a^{17}$. As before, in the presence of water the main compound isolated from the reaction mixture was $7 \mathrm{~b}^{18}$, the phenyl analog of 7 a . Although the yields of the above-described phosphorinene synthesis are quite modest at present, the reaction seems to us to have value. It is an easy one-step synthesis starting with readily available compounds, and the special substitution pattern of the phosphorinane may enable further interesting transformations of the obtained compounds.

Efforts to perform the $\mathrm{RPX}_{2} \cdot \mathrm{AlX}_{3}$ addition reaction with allyl or homoallyl cyclopropanes $\underset{\sim}{a}, n=1$ or 2 have failed thus far to give any phosphaheterocycle. If water ( $0.1-1$ eq) is added, however, the higher homologes of $\underset{\underline{6}}{ }$ can be obtained in minute quantities.

## References and Notes

1a, Y. Kashman, Y. Menachem and E. Benary, Tetrahedron 29, 4279 (1973).
b. Y. Kashman and A. Rudi, Tetrahedron Letters, 2819 (1976).
c. M. Rotem and Y. Kashman, ibid, 63 (1978).
d. A. Rudi and Y. Kashman, ibid, 2209 (1978).
2. E. Jungerman, J.J. McBride, R. Clutter and A. Mais, J.Org.Chem., 27, 606 (1962).

3a. J.J. McBride, E. Jungerman, J.V. Killheffer and R.J. Clutter, ibid, 27, 1833 (1962).
b. S.E. Cremer and R.J. Chorvat, ibid, 32, 4066 (1967).

4a. R. Maurin, M. Bertrand, Bull.Soc.Chim.Fr. 998 (1970) and Synthesis 81 (1978).
b. T. Shono and R. Oda, Chem.Abs. 55, 4381 (1961).
c. R.M. Moss, J.Org.Chem. 27, 2683 (1962); b.p. $80 / 0.5 \mathrm{~mm} \mathrm{Hg}$.
5. The cyclopropane derivatives examined were: 1,1-dichloro-2,2-dimethylcyclopropane and 1,1-dichloro-2-methy1-2-phenylcyclopropane.
6. Satisfactory microanalysis was obtained for 3 Z .
7. Performing the mass spectra at 15 eV rather than 70 eV gave a $2 \mathrm{M}^{+}$ion. The MWt of the compound was established by its vapour pressure; E.P. Clark, J.Anal.Chem. 820, (1941).
8. Chemical shifts ( $\mathrm{CDCl}_{3}$ ) are given in ppm relative to TMS. ${ }^{1}{ }_{H}$-NMR spectra were recorded either on a Jeol-JNM C-60HL spectrophotometer (P-decoupled) or on a Bruker WH-90 instrument ${ }^{13}$ C-NMR spectra were recorded on the Bruker WH-90 instrument under conditions of PND. Signals were assigned using known $\delta$-values, $J_{P C}$ values and off-resonance experiments.
9. $\quad \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{OP}$, m.p. $135^{\circ}$ (acetone-hexane); $\nu_{\max }^{\mathrm{CHCl}} 33020,1450,1400,1300,1210,1180,1130,860$, $830,700 \mathrm{~cm}^{-1}$; m/e(\%) 290/288( $\left.\mathrm{M}^{+}, 8 / 25\right)$ and $255 / 253\left(\mathrm{M}^{+}-\mathrm{Cl}, 30 / 100\right) ;{ }^{1}{ }_{\mathrm{H}-\mathrm{NMR}: 1.75 \mathrm{~s}}$ (3H),
$1.85 \mathrm{~s}(3 \mathrm{H}), 2.8-3.5 \mathrm{~m}(4 \mathrm{H})$ and $7.6-8.4(5 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}: 125.5 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=7\right), 121.5 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=6\right)$, $82.6 \mathrm{~d}\left(J_{P C}=66\right), 50.9 \mathrm{t}, 31.2 \mathrm{dt}\left(\mathrm{J}_{\mathrm{PC}}=68\right), 21.7 \mathrm{dq}\left(\mathrm{J}_{P C}=12\right)$ and 20.3 q .
10. An additional $\mathrm{sp}^{2}$ carbon atom appeared together with the phenyl carbon atoms and could not be identified.
11. A similar example observed by us (unpublished) was the failure of phenyl(3-phenylpropyl)halophosphane to undergo internal cyclisation by $A 1 X_{3}$, whereas the methyl analog did undergo ring closure.
12. Compounds $\underset{=}{6}$ and Za were obtained in ca. $5 \%$ and $10 \%$, respectively.
13. Compound 6 is an oil; $\mathrm{C}_{1}{ }_{1} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{OP}$; $\mathrm{m} / \mathrm{e}(\%) 326 / 324\left(\mathrm{M}^{+}, 100 / 100\right), 291 / 289\left(\mathrm{M}^{+}-\mathrm{Cl}, 25 / 30\right)$ and 229/227 (30/100): $\quad{ }_{\operatorname{lnax}} 3000,1600,1390,1370,1090,1080,1000,950,850 \mathrm{~cm}^{-1}$. $1_{\text {H-NMR: }}$ 1.4 an AB system $(2 \mathrm{H}), 1.45 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=21\right), 1.85 \mathrm{~s}(3 \mathrm{H})$ and 7.8 m (5H). Compound 7 za is an oil; $\mathrm{C}_{13}{ }^{\mathrm{H}}{ }_{16}{ }^{\mathrm{C} 1}{ }_{3} \mathrm{OP}, \mathrm{m} / \mathrm{e}(\%) 326 / 324\left(\mathrm{M}^{+}, 1 / 1\right), 291 / 289\left(\mathrm{M}^{+}-\mathrm{Cl}, 25 / 40\right)$ and $256 / 254\left(\mathrm{M}^{+}-2 \mathrm{C} 1,40 / 100\right)$; $\nu_{\max }^{\text {neat }} 3000,2960,2930,1590,1440,1380,1240,1110 \mathrm{~cm}^{-1} ; \mathrm{I}_{\mathrm{H}-\mathrm{NMR}:} 1.6 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=2\right), 1.7 \mathrm{~s}(3 \mathrm{H})$, $1.9 \mathrm{~s}(3 \mathrm{H}), 3.4 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=5\right), 7.7 \mathrm{~m}(3 \mathrm{H})$ and $8.4 \mathrm{~m}(2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: 123.3 \mathrm{~s}, 120.0 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=10\right)$, $87.6 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=96\right), 43.9 \mathrm{dt}\left(\mathrm{J}_{\mathrm{PC}}=6\right) 21.3 \mathrm{q}, 20.7 \mathrm{q}$ and 20.4 q .
14. P. Crews, J.Org.Chem., 40, 1170 (1975).
15. We came to the conclusion that the mechanism of this addition is not simply a protonation by $H X$, obtained from hydrolysis of $\mathrm{AlX}_{3}$ followed by quenching with $R P X_{2}$, as the addition of $\mathrm{RPX}_{2} \cdot \mathrm{HX}$ to the olefin failed to give the same products; rather, it appears to involve either a phosphiranium ion or the participation of a special complex produced under the reaction conditions ${ }^{16}$. A full description of the experiments carried out to elucidate this problem will be described elsewhere.
16a. G.M. Kramer, R.M. Skomoroski and J.A. Hinlicky, J.Org.Chem., 28, 2085 (1963).
b. H.C. Brown and H. Peasall, J.Am.Chem.Soc., 73, 4681 (1951).
17. Compound 3 b is crystalline $\mathrm{C}_{14}{ }^{\mathrm{H}} 18^{\mathrm{C} 10 \mathrm{P}} \mathrm{m} . \mathrm{p}$. $115^{\circ}$ (acetone-hexane), $\nu_{\max }^{\mathrm{CHCl}} 33000,1500,1460$, $1310,1190,1160,970,910$ and $900 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{e}(\%): 270 / 268\left(\mathrm{M}^{+}, 20 / 50\right), 233\left(\mathrm{M}^{+}-\mathrm{Cl}, 50\right)$ and 231 (100); ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.50 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=12\right), 1.85 \mathrm{~s}(6 \mathrm{H}), 2.5 \mathrm{~m}(2 \mathrm{H}), 3.2 \mathrm{AB}$ quar. $(2 \mathrm{H}), 7.5 \mathrm{~m}(3 \mathrm{H})$ and 7.9 m (2H); ${ }^{13}{ }_{C-N M R}: 125.4 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=8\right), 119.9 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=5\right), 66.1 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=64\right), 46.5 \mathrm{t}, 32.4 \mathrm{dt}\left(\mathrm{J}_{\mathrm{PC}}=69\right)$, $21.5 \mathrm{dq}\left(\mathrm{J}_{\mathrm{PC}}=12\right), 20.0 \mathrm{q}$ and $10.0 \mathrm{dq}\left(\mathrm{J}_{\mathrm{PC}}=72\right)$.
Compound 3 c is also crystalline; m.p. $160^{\circ}$, mass spectrum identical with $3 \mathrm{~b}, v_{\max }^{\mathrm{CHC1}} 3: 3100$, $1510,1470,1410,1200,1180,1150,980,920,900$ and $850 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}-\mathrm{NMR}:} 1.5 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=15\right), 1.8 \mathrm{~s}$ $(6 \mathrm{H}), 2.5 \mathrm{brs}\left(1 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=12\right), 2.9 \mathrm{brs}\left(1 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=18\right), 3.2 \mathrm{brs}\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=18\right) 7.4-7.6 \mathrm{~m}(3 \mathrm{H})$ and $7.8-8.2 \mathrm{~m}$ (2H).
18. Compound $7 \mathrm{~b}, \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{OP}$ is an oil; $\nu_{\max }^{\text {neat }} 3000,2950,1490,1450,1300,1220$ and $1180 \mathrm{~cm}^{-1}$; $\mathrm{m} / \mathrm{e}(\%) 306 / 304\left(\mathrm{M}^{+}, 8 / 13\right), 269 / 267\left(\mathrm{M}^{+}-\mathrm{C} 1,3 / 10\right), 223(63), 221(100), 205(25)$ and 170(40); $1_{\mathrm{H}-\mathrm{NMR}:}, 1.22 \mathrm{~s}(3 \mathrm{H}) 1.61 \mathrm{~s}(3 \mathrm{H}), 1.7 \mathrm{~s}(3 \mathrm{H}), 2.2 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=15\right), 3.46 \mathrm{brs}\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{PH}}=9\right), 7.7 \mathrm{~m}$ ( 3 H ) and $8.1 \mathrm{~m}(2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ : $131.5 \mathrm{~s}, 121.3 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=12\right), 76.3 \mathrm{~d}\left(\mathrm{~J}_{\mathrm{PC}}=76\right), 40.9 \mathrm{dt}\left(\mathrm{J}_{\mathrm{PC}}=6\right), 21.2 q$, $20.8 q, 19.6 q$ and $17.7 \mathrm{dq}\left(\mathrm{J}_{\mathrm{PC}}=75\right)$.

